Objects Cannot Think: Objectification and Cognitive Depletion

Rachel Hunter

Dominican University
Abstract

Objectification occurs any time that an individual’s physical features are viewed as more important than inner characteristics. Women may experience a negative mood when objectified, which is believed to interfere with intellectual resources and performances, ultimately resulting in cognitive depletion. The current study manipulated objectification through the use of YouTube music videos created by the rap artist, Lil’ Wayne, which were shown to female participants via Facebook. Participants were randomly assigned to one of three music video conditions: objectifying content, non-objectifying content, or control content. After viewing the video, participants completed two self-report questionnaires, which measured current mood and feelings of objectification. Next, participants were given the option of studying for an upcoming cognitive task. The percent of time spent studying was the operational definition of cognitive depletion. The hypothesis was not supported; objectifying music video content did not significantly affect participant mood nor the percent of time spent studying. The data suggest that liberal arts university students may be less prone to objectifying content than participants from other studies.

Keywords: objectification, cognitive depletion theory
Objects Cannot Think: Objectification and Cognitive Depletion

Although the United States is a land of opportunity where individuals of any age, ethnicity or gender have equal rights, there appear to be societal conflicts that keep certain categories of people, such as women, from reaching their potential. Women have consistently been underrepresented in some specific academic areas, not necessarily because of intellectual abilities. For example, women have been consistently underrepresented in the STEM (science, technology, engineering, and math) fields (Park, Young, Troisi, & Pinkus 2011). The United States Census Bureau revealed that in 2011, women consisted of only 26% of the STEM workforce (Hyer, 2013).

The current study builds on previous research regarding cognitive depletion theory conducted by Storbeck (2012) in order to examine how objectification, defined as the process of presenting a human as merely an object, may produce negative moods in females, ultimately cognitively depleting them during an academic task. Cognitive depletion, produced by a negative mood that results from feelings of objectification, could potentially provide some evidence as to why there are gender gaps in some academic settings, such as those seen in the STEM fields. Overall, the current study hypothesizes that the objectification could leave women cognitively depleted.

Objectification occurs any time that an individual’s body parts or physical features are viewed by others as entities, separate from the individual’s identity or sense of self (Frederickson et al., 1998). The most common objectifying situation involves a male’s gaze towards a woman. Moreover, objectification theory states that, as a result of being sexually objectified, one may
become socialized to also perceive their body as an object (Gay & Castano, 2010). In other words, a woman who feels objectified may over time start to self-objectify.

Self-objectification can be distinguished into two categories: trait self-objectification (TSO) and state self-objectification (SSO). TSO is the internalization of objectification, and leads individuals to consistently view themselves in objectifying ways, while SSO is a form of self-objectification that is activated by an experience and is situation-specific (Gay & Castano, 2010). Past research indicates that objectification and self-objectification go hand-in-hand and both impact women’s cognitive resources and social interactions (Gay & Castano, 2010). Such patterns in mental processing occur because one’s cognition is interrupted by the anxiety and body monitoring (Saguy, Quinn, Dovidio, & Pratto, 2010). Overall, such findings may suggest that objectification leaves an individual cognitively depleted, limiting one’s ability to use the mental resources that are necessary for participating in academic or professional settings, such as the STEM field.

An individual may be intelligent and capable of an academic task, yet unable to perform to the best of their abilities due to cognitive depletion. Described as a limiting of one’s cognitive abilities, cognitive depletion may be responsible for situations in which one with the ability to succeed at a task performs poorly (Storbeck, 2012). One’s abilities are believed to become limited when an individual is in a negative mood. Overall, cognitive depletion theory suggests that such instances may be mediated by experiencing a negative mood. Instead of focusing on a cognitive task, individuals experiencing a negative mood are believed to direct their attention to their emotions and to the emotionally-charged event that occurred.
Feeling objectified could be a negative emotion-charged event that interferes with a woman’s cognition. Many researchers in the past have documented the effects of objectification on cognitive depletion. Fredrickson, Roberts, Noll, Quinn, and Twenge (1998) found that women who participated in the act of self-objectification were likely to have a poor math performance. Researchers manipulated objectification by randomly assigning both male and female participants to try on either a sweater or a swimsuit. This manipulation was based on the idea that trying on a swimsuit would make an individual feel more self-conscious and thus to self-objectify compared to participants who were asked to try on a sweater that covers the body. In both conditions, participants were directed to a dressing room where they could privately try on the article of clothing and then, while still wearing the clothes, were asked to complete self-report questionnaires and a math test.

Participants completed self-report questionnaires assessing trait self-objectification (TSO) and state self-objectification (SSO). The Self-Objectification Questionnaire, a TSO measure, asked participants to read a list of ten body attributes and rank each item based on how strongly it impacts their physical self-concept. The measure requires participants to avoid assigning the same rank to multiple body attributes, forcing them to order the items. Additionally, participants completed the Twenty Statements Test (TST), which is a SSO measure that asks participants to make twenty statements about themselves starting with the phrase “I am.” Lastly, participants completed a math assessment which consisted of problems chosen from the Graduate Management Admissions Test (GMAT).

Results indicated that both male and female participants in the swimsuit condition reported higher levels of state self-objectification (SSO), indicating that wearing the revealing clothing was related to feeling as though one could be defined by their physical features more so
than their internal attributes. Even though participants of both sexes in the swimsuit condition felt more objectified than those in the sweater condition, men still scored higher on the math test compared to women. Interestingly, the math scores of male participants were similar across both conditions, while female participants in the swimsuit condition performed significantly worse on the math test compared to females in the sweater condition. Overall, results suggest that the math performance of men is not affected by the presence or absence of objectification while the performance of women did appear to be negatively affected by feelings of objectification. Such findings indicate that many females may experience a disruption of mental abilities, or cognitive depletion, if faced with a situation that could be objectifying. In other words, objectification may negatively impact a woman’s academic performance, which could ultimately explain why women are underrepresented in the STEM fields.

Another study focusing on how objectification relates to cognitive abilities was conducted in 2010 by Gay and Castano, who randomly assigned female participants to either a high-objectification condition or a low-objectification condition. Participants in the high-objectification condition worked with a male researcher, while participants in the low-objectification condition interacted with a female researcher. This objectification manipulation technique is based on past research which shows that women tend to feel more objectified by men than by women. All participants were video-taped for two minutes from the neck down while they spoke about themselves. After the taping, researchers showed the video to the participant. Next, participants completed two measures assessing the availability of their cognitive resources: the Letter Number Sequencing scale (LNS), a subtest of the Wechsler Adult Intelligence Scale, and an excerpt from the Graduate Management Admissions Test (GMAT).
Results support the hypothesis that objectification limits one’s cognitive ability and affects performance, since participants in the high-objectification condition performed more poorly on both cognitive scales used and also took longer to complete both measures. There was also a statistically significant interaction between trait and state objectification, such that those in the high-objectification condition were especially likely to struggle to perform the cognitive tasks to the best of their abilities and took longer to complete intellectual tasks if they were also high in TSO. Overall, it appears that objectification leads to self-objectification and cognitive depletion in women.

In addition to limiting cognitive resources, objectification may also make some women feel “invisible,” thereby limiting their desire for social interaction (Saguy, Quinn, Dovidio, & Pratto, 2010). A study conducted by Saguy et al. (2010) reasoned that since objectification leads an individual to believe her physical attributes are more central than their internal qualities, one who feels objectified may refrain from showing their internal characteristics or thoughts in order to act like a “good object.” To test this idea, Saguy et al. randomly assigned male and female participants to one of three conditions: facial expression condition (low-objectification), body gesture condition (high-objectification), and vocal cues condition (control condition). Participants in the facial expression condition were videotaped from the neck up, while participants in the body gesture condition were videotaped from the neck down. Those in the vocal cues condition were audio recorded instead of videotaped. Before the recording, researchers told the participant that either a man or a woman would be viewing their recording, which further manipulated objectification due to women often feeling more objectified by men. All participants were instructed to talk about themselves and were told that the video recorder would run for a full two minutes, whether the participant continued to talk or not. Saguy et al.
timed how long each participant spoke throughout the recording process. After the two-minute recording, participants were shown their videotape or audio recorded session in order to reinforce the manipulation. Lastly, participants were asked to identify which of the three conditions would be their least favorite condition to participate in.

Results showed a gender interaction among objectification, since the high-objectification only affected the amount of time that female participants spent talking. Overall, the female participants consistently spoke less than men. Additionally, results indicated that women across all three conditions who were told their recording would be shown to a male spent less time talking compared to the female participants who believed a woman would be viewing their recording. This suggests that even though both men and women may often feel objectified, cognitive resources that can be used for social interactions are only negatively affected in females. This effect is especially prominent when a female is interacting with a male.

Women seem to be aware of the negative implications of objectification, since when asked which condition they would least prefer, more women than men chose the condition in which their body would not be taped (Saguy et al., 2010). Such findings suggest that women do not enjoy others focusing on their bodies and dislike feeling objectified. It appears that being objectified, especially by a man, may lead a woman to refrain from engaging in conversation and even to self-objectify. By limiting social interactions, women are not able to voice their opinion or their intellectual thoughts, both of which crucial factorings of succeeding in academia.

Past research conducted by Fredrickson et al. (1998), Gay and Castano (2010), and Saguy et al. (2010), indicates that when others objectify a woman and inform her that her body is of more use than her character, she may begin to self-objectify, which may interfere with her ability
to draw on cognitive resources such as intellect and social skills. Being objectified by a man seems to be such a common occurrence that women often feel objectified by merely interacting with a man (Saguy et al., 2010).

Social media distractions could potentially strengthen to cognitive depleting effects of objectification due to vast majority of media products containing objectifying images of women. Recent research conducted by Stankiewicz and Rosselli (2008) indicates that over 51% of magazine advertisements portrayed women as objects. Multitasking that involves academic or professional tasks and media products containing objectification could potentially cause a woman’s cognitive resources to be depleted. Social media sites, such as Facebook, combine both cognitive tasks and social interactions, especially when students are multitasking on their computers. Working on homework while also browsing the web appears to be a common occurrence, since a survey completed by students while in class at one university revealed that 58% of participants working on a laptop used the device for purposes unrelated to coursework for the majority of the time (Paul, 2013) and a related investigation of media usage indicated that adolescents spent an average of seven hours a day using social media websites (Hill, 2012). It can be assumed that some, if not most, of adolescents are also attempting to do homework or study while engaging in social media products.

When asked which social media websites that they use the most, 81% of teenage participants chose Facebook (Madden, Lenhart, Cortesti, Gasser, Duggan, Smith, 2013). The fact that so many teenagers enjoy Facebook and use it regularly suggests that its content may be extremely influential and impactful. Although Facebook administrators and policy makers limit hate speech and harmful content, some words or images that some individuals consider offensive still remain. For example, controversial music videos containing objectified images of women
are commonly shared on Facebook from other websites, such as YouTube. A study conducted by Grabe and Hyde (2009) indicates that nearly 90% of music videos contain hypersexualized and objectified female actors. Music videos containing such content can be posted on Facebook and shared among friends. Although some audiences do not find such videos offensive, others may be nonetheless affected by their images and messages.

Viewing objectifying material, such as the content of certain music videos, may produce a negative mood in individuals who find objectification to be offensive. According to the cognitive depletion theory described by Storbeck (2012), such individuals would be cognitively depleted and unable to focus their whole attention on an academic task. Instead, individuals will direct their cognition to the emotionally-charged event. In other words, cognitive depletion appears to be mediated by a negative mood.

Since students commonly multitask and spend an average of seven hours a day on social media sites, it is very probable that females could run across objectifying content on Facebook, which could potentially deplete them cognitively. Such cognitive depletion is hypothesized to be harmful to the cognitive performances of females. The current study will explore the relationships between objectifying media products and cognition. To our knowledge, this is the first study of its kind to investigate the effects of objectification in YouTube music videos in the context of Facebook, which is strengthens the ecological validity of the current study due to the popularity and overall usage of both YouTube and Facebook. To test the hypothesis that cognitive depletion may be mediated by a negative mood resulting from objectifying media content, the current study provided participants with a real-world situation in which they encountered objectification on Facebook and then a cognitive task.
Method

Participants

All participants were students at Dominican University, acquired through convenience sampling. This study only accepted female students with Facebook accounts as participants. Sign-up sheets were posted in the psychology department, which explained that participating students would be rewarded with a $5.00 gift card as an incentive. Additional incentives to participate included possible class extra credit for some individuals. Overall, 33 participants were recruited, all between the ages of 18 and 31 ($M=21$, $SD=3$). Forty-two percent of participants were Caucasian, 30% Hispanic or Latino, 15% Asian or Pacific Islander descent, and 12% Black. All 33 participants went through the research process individually and were randomly assigned to one of three conditions: an objectification condition (12), a non-objectification condition (10), and a neutral condition (11).

Materials and Procedure

After reading an informed consent form, participants were asked to log onto their Facebook accounts. The cover story indicated that the current study was investigating the relationship between personality and media products, and that Facebook was chosen to show the media to participants out of convenience. Once logged on, individuals were invited to join a secret Facebook group, which contained only an embedded YouTube video. A secret Facebook group restricts who can become a group member in addition to who can view the members of the group. In other words, only participants of the current study could become a group member and no one else using Facebook would be able to see their membership, ensuring confidentiality.
Once each participant completed the research process, they were immediately removed from the Facebook group so that future participants would not see their membership.

After joining the secret Facebook group, participants were asked to watch an edited version of a music video, which censors vulgar language by excluding swear words. Each of the three music videos that participants viewed are official videos featuring songs and performances by Lil’ Wayne, arguably one of the most popular rappers of the early twenty-first century. According to Gary Trust, who writes for Billboard.com, Lil’ Wayne is the artist with the most hits on the Billboard Hot 100 Hits List (2012). With 109 entries on the list, Lil’ Wayne beat a record that previously belonged to Elvis Presley, with 108 entries. Each of the three videos chosen for the current study were selected based on content in addition to their popularity on YouTube.

The music video used in the objectification condition was created for Lil’ Wayne’s song titled “Love Me,” which features two other rap artists, Drake and Future. “Love Me” was released on Lil’ Wayne’s 2013 album, titled “I Am Not a Human Being II.” While the edited version of “Love Me” only has 671,550 views on YouTube as of February 2014, the explicit version managed to receive 103,883,969 views, showing the popularity of the song. The video consistently objectifies women through its images and its lyrics. The only women in the video are caged and chained, portrayed with animal body parts, or are positioned in sexualized poses. Additionally, the lyrics of “Love Me” only mention women in a sexual context, suggesting that a woman’s body is of more importance than her character or content. These women do not have active roles in the video; instead, they are passive and included in the video simply as objects to admire.
The music video chosen for the non-objectification condition, titled “Runnin’,” shows Lil’ Wayne performing with a female artist, Shanell. “Runnin’” was released on Lil’ Wayne’s 2010 album titled “I Am Not A Human Being.” As of February 2014, the video received 6,470,189 YouTube video views. The video is edited, and there is not an official explicit version on YouTube. Images and lyrics portrayed in this video do not objectify women, since Shanell is seen wearing non-sexualized clothing and is not posed in suggestive or inappropriate ways. Additionally, Shanell has an active, agentic role in the video; she is seen singing and acting in the narrative scenes of the video.

“Get a Life” featuring only Lil’ Wayne was chosen for the control condition music video. The song, off of Lil’ Wayne’s 2010 album titled “I Am Not A Human Being,” had 6,297,702 YouTube views as of February 2014. The video is edited, and there is not an explicit version. “Get a Life” was chosen as a control condition video because the images and words do not involve women. A control condition was included in order for some participants to view a music video that does not include any women, because even though the video for the non-objectification condition does not objectify women, the presence of any attractive women could subtly seem objectifying to some individuals. By including a condition with no women, it will be highly unlikely that participants could interpret any objectification.

After watching one of the three music videos described above, participants were asked to complete two measures on a Microsoft Word document. The order of the questionnaires was randomized in order to ensure that the order of appearance would not affect results. One document contained a revised version of the Twenty-Statements Test (see Appendix A), a state self-objectification (SSO) measure. The version was revised and validated by Fredrickson et al. (1998). The measure, which was included as a manipulation check, asks participants to construct
twenty sentences about themselves, starting with the phrase “I am.” The twenty sentences that participants wrote are typically coded based on the following categories: negative comments regarding the body, positive comments regarding the body, negative comments regarding non-physical aspects of the self, positive comments regarding non-physical aspects of the self, demographic information, and other. Both negative and positive comments regarding the body are considered self-objectifying. Coding was done completely blind to participant condition.

Another document consisted of the Positive Affect and Negative Affect Scale (PANAS), which was constructed and validated by Watson, Clark, and Tellegen (1988). The PANAS Scale (see Appendix B) measures a participant’s current positive and negative moods by asking them to rate certain adjectives, such as “excited,” on a scale from one to five.

Next, participants were asked to open a third document containing twenty math problems from Gravetter and Wallnau’s “Statistics for the Behavioral Sciences” (2007). Participants were provided with a cover story stating that they would soon be given a test containing five sample problems from the Graduate Record Examinations (GRE) math section, and that the next ten minutes of their time could be used however they see fit. The Microsoft Word document containing the twenty math problems was said to be a practice tool to help participants prepare for the sample GRE test, but its completion was not required. In order to motivate participants, the experimenter told participants that the sample GRE test that would be given was previously tested and found to be very diagnostic of a student’s intelligence and success in graduate school and future professions. After the above instructions, participants were left alone in the research room for ten minutes, allowing them to either study the math problems or browse the web without feeling the pressure of a researcher watching them as they make their decision.
ManicTime, a program which tracks the amount of time that documents and websites are open on a computer, was installed on the computer in order to track all participant computer usage in order for the cognitive task portion of the study to be conducted without the experimenter present. The program recorded what documents and websites were open on the participant’s computer during the ten minutes, which revealed whether they studied the Microsoft Word document or not and for how long they chose to study.

To summarize, participants used Facebook to watch one of three music videos: an objectification video, a non-objectification video, or a control condition video. After watching the video, participants completed two self-report questionnaires. Participants completed the Twenty-Statements Test (TST), a state self-objectification (SSO) measure, which served as a manipulation check. Next, participants completed the Positive Affect and Negative Affect Scale (PANAS). Afterwards, participants were provided with a cover story regarding an upcoming cognitive task, and were given the chance to either prepare for the task or use the computer for unrelated purposes. ManicTime revealed their decisions, ultimately indicating which participants decided to prepare and which did not.

Results

To check whether the music videos manipulated objectification, data from the Twenty Statements Test (TST) was coded based on objectifying content, which included any comments about physical appearance, as well as any non-objectifying content (e.g., “I am nice”). The majority of participants recorded only one objectifying statement, indicating that the manipulation was not strong enough. TST data was coded a second time based on positive, neutral, or negative comments. Results indicated that the majority of participants made positive
statements in general ($M=11$, $SD=5$) and very few negative statements ($M=3$, $SD=3$). There were no statistically significant differences among TST means from either coding method based on participant condition (See Table 1).

The weakness of the objectification manipulation is also seen when analyzing the amount of time that participants in each of the three conditions spent studying. Since there were no significant differences among the mean time spend studying within each condition (See Figure 1), the hypothesis stating that objectification could lead to cognitive depletion was not supported. There were also no statistically significant differences of positive or negative affect among the conditions, indicating that the manipulation failed to affect participant mood.

To investigate the variables further, Pearson’s R correlations were conducted between negative affect, positive affect, the percent of time spent studying, and the three video conditions. Results also indicated that none of the correlations between any of the variables were statistically significant (See Table 2).

Discussion

There are many reasons why the hypothesis that objectification would lead to cognitive depletion was not supported. Arguably the most influential factor contributing to the lack of correlation between objectification, negative mood, and percent of time spent studying is the small sample size. If there is a relationship between any of the variables discussed above, this study may simply not have had the power to detect it since the current study did not even discover a small effect. A power analysis conducted post-hoc indicated that in order to find a small effect, 1,548 individuals would need to participate. Additionally, 252 participants would be
needed to identify a medium sized effect and 102 would need to participate in order to find a large effect.

Another reason that the hypothesis may not have been supported may be due to expectation effects. After completing the TST and the PANAS scale, participants are informed that they would have 10 minutes to study for an upcoming 5 question sample of the GRE. Although participants were reminded that they were not required to study, individuals may not act naturally in such a situation. Despite possible cognitive depletion, it may be that participants felt that it was necessary to study because the experimenter may expect participants to do so. Even though the researcher left the room during this 10 minute study period, the individual may have still felt pressured to study. Overall, the thoughts about experimenter expectations regarding behavior may describe why there was no significant variations among percent of time spent studying.

Furthermore, another reason that may explain why the manipulation seemed to have no effect on cognition may be related to the level of comfort of the participants. Since they were left alone in a research room on the campus premises and had access to a public computer, participants may not have felt comfortable enough to use the computer for purposes unrelated to studying for the upcoming cognitive task. It is possible that individuals who view objectifying media content, such as music videos, while at home or while logged onto their own private computer may find it more socially acceptable to stray away from a cognitive task while being affected by offensive content. Perhaps future replications of this research could find ways to make participants feel more comfortable so that they may find it acceptable to choose an activity other than studying. Overall the ecological validity of this study may not have been as strong as originally thought.
In regards to the objectification manipulation, it may be that the manipulation failed to work because it was not strong enough. Current findings from the TST are quite different from TST data reported by Frederickson et al. (1998), in which participants in the objectification condition recorded an average of 4 objectifying statements. Only 2 participants in the current study created 4 self-objectifying statements about themselves, which was the average amount of objectifying statements that were created by participants in the study conducted by Frederickson et al. (1998). These results indicate that participants involved in the current study may have been more resilient, self-confident, or simply more happy than participants from other studies. Perhaps something about the environment of the Catholic liberal arts university setting, which is has predominantly women students, has an impact on enrolled students which could explain how they are different from students elsewhere.

There may have been an additional problem with the intended manipulation. Some participants may not have found the content of the objectifying music video to be offensive or harmful due to personal differences. Future researchers focusing on objectifying media content may wish to distribute questionnaires that ask participants whether they found the media content to be offensive or demeaning towards women. Such information may potentially serve as an additional manipulation check or simply provide information regarding how participants view media content in general. It is possible that there are individual differences that could begin to explain why some individuals find the content of objectifying music videos more offensive and harmful than others. Future research may wish to identify such individual differences in order to find ways in which individuals negatively affected by such media content can become more resilient.
Despite the lack of support for the hypotheses of the current study, the possibility of a relationship between objectifying media content and female cognitive depletion should not be dismissed since past studies, such as those conducted by Frederickson et al. (1998) and Gay and Castano (2010), found statistically significant evidence of a relationship. As discussed above, there are many factors that future researchers should consider in order to produce a more replicable and valid experiment which could support the hypothesis that viewing objectifying media content could ultimately leave women cognitively depleted.
References

Appendix A
Twenty Statements Test

This page consists of twenty blank lines, all beginning with the words “I AM.” Please complete the twenty statements below based on aspects of yourself. Just give twenty different answers to this question; answer as if you were giving the answers to yourself - not someone else. Write your answers in the order that they occur to you. Don’t worry about logic or importance. Simply think about who you are.

1. I AM
2. I AM
3. I AM
4. I AM
5. I AM
6. I AM
7. I AM
8. I AM
9. I AM
10. I AM
11. I AM
12. I AM
13. I AM
14. I AM
15. I AM
16. I AM
17. I AM
18. I AM
19. I AM
20. I AM
Appendix B
Positive and Negative Affect Scale

This scale consists of a number of words that describe different feelings and emotions. Read each item and then list the number from the scale below next to each word. **Indicate to what extent you feel this way right now, that is, at the present moment *OR* indicate the extent that you have felt this way over the past week (circle the instructions you followed when taking this measure).**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Very Slightly</td>
<td>A Little</td>
<td>Moderately</td>
<td>Quite a Bit</td>
<td>Extremely</td>
<td>or Not at All</td>
</tr>
</tbody>
</table>

1. Interested
2. Distressed
3. Excited
4. Upset
5. Strong
6. Guilty
7. Scared
8. Hostile
9. Enthusiastic
10. Proud
11. Irritable
12. Alert
13. Ashamed
14. Inspired
15. Nervous
16. Nervous
17. Attentive
18. Jittery
19. Active
20. Afraid
Table 1

Twenty Statement Test Coded Data Based on Video Condition

<table>
<thead>
<tr>
<th>Coding Category</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectifying Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectification condition</td>
<td>1.83</td>
<td>0.94</td>
</tr>
<tr>
<td>Non-objectifying condition</td>
<td>0.70</td>
<td>1.25</td>
</tr>
<tr>
<td>Control condition</td>
<td>1.09</td>
<td>1.22</td>
</tr>
<tr>
<td>Positive Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectification condition</td>
<td>11.67</td>
<td>5.66</td>
</tr>
<tr>
<td>Non-objectifying condition</td>
<td>12.50</td>
<td>5.19</td>
</tr>
<tr>
<td>Control condition</td>
<td>11.27</td>
<td>4.29</td>
</tr>
<tr>
<td>Neutral Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectification condition</td>
<td>6.42</td>
<td>5.88</td>
</tr>
<tr>
<td>Non-objectification condition</td>
<td>5.10</td>
<td>4.75</td>
</tr>
<tr>
<td>Control condition</td>
<td>4.64</td>
<td>3.85</td>
</tr>
<tr>
<td>Negative Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectification condition</td>
<td>1.92</td>
<td>1.78</td>
</tr>
<tr>
<td>Non-objectification condition</td>
<td>2.40</td>
<td>2.37</td>
</tr>
<tr>
<td>Control condition</td>
<td>4.09</td>
<td>3.67</td>
</tr>
</tbody>
</table>
Figure 1

Video condition and percent of time spent studying.

Confidence intervals provide the likelihood of population means.
Table 2

Pearson’s R Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pearson’s R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Condition</td>
<td></td>
</tr>
<tr>
<td>Negative affect</td>
<td>-0.10</td>
</tr>
<tr>
<td>Positive affect</td>
<td>0.05</td>
</tr>
<tr>
<td>Percent of time spent studying</td>
<td>0.14</td>
</tr>
<tr>
<td>Negative Affect</td>
<td></td>
</tr>
<tr>
<td>Positive affect</td>
<td>0.29</td>
</tr>
<tr>
<td>Percent of time spent studying</td>
<td>-0.37</td>
</tr>
<tr>
<td>Positive Affect</td>
<td></td>
</tr>
<tr>
<td>Percent of time spent studying</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

None of the above correlations were statistically significant.